USGS - science for a changing world

South Dakota Water Science Center

orange dotHome orange dotScience Topics orange dotOur Cooperators orange dotPublications/Videos orange dotGIS/Geospatial Resources orange dotNewsroom orange dotOutreach orange dotContact




USGS Water Science Centers are located in each state.

There is a USGS Water Science Center office in each State. Washington Oregon California Idaho Nevada Montana Wyoming Utah Colorado Arizona New Mexico North Dakota South Dakota Nebraska Kansas Oklahoma Texas Minnesota Iowa Missouri Arkansas Louisiana Wisconsin Illinois Mississippi Michigan Indiana Ohio Kentucky Tennessee Alabama Pennsylvania West Virginia Georgia Florida Caribbean Alaska Hawaii New York Vermont New Hampshire Maine Massachusetts South Carolina North Carolina Rhode Island Virginia Connecticut New Jersey Maryland-Delaware-D.C.

A Review of Semivolatile and Volatile Organic Compounds in Highway Runoff and Urban Stormwater

Thomas J. Lopes, and Shannon G. Dionne

U.S. Geological Survey, 1698 Mountain View Rd., Rapid City, South Dakota 57702 U.S.A.
Phone (605) 355-4560 ext, 240, Telecopier (605) 355-4523

Many studies have been conducted since 1970 to characterize concentrations of semivolatile organic compounds (SVOCs) in highway runoff and urban stormwater. To a lesser extent, studies also have characterized concentrations of volatile organic compounds (VOCs), estimated loads of SVOCs, and assessed potential impacts of these contaminants on receiving streams. This review evaluates the quality of existing data on SVOCs and VOCs in highway runoff and urban stormwater and summarizes significant findings. Studies related to highways are emphasized when possible. The review included 44 articles and reports that focused primarily on SVOCs and VOCs. Only 17 of these publications are related to highways, and 5 of these 17 publications are themselves review papers. SVOCs in urban stormwater and sediments during the late 1970's to mid-1980's were the subject of most studies.

Criteria used to evaluate data quality included documentation of sampling protocols, analytical methods, minimum reporting limit (MRL) or method detection limit (MDL), quality-assurance protocols, and quality-control samples. The largest deficiency in documenting data quality was that only 10 percent of the studies described where water samples were collected in the stream cross section. About 80 percent of SVOCs in runoff are in the suspended solids. Because suspended solids can vary significantly even in narrow channels, concentrations from discrete point samples and contaminant loads estimated from those samples are questionable without information on sample location or how well streamflow was mixed. Thirty percent or fewer of the studies documented the MRL, MDL, cleaning of samplers, or use of field quality-control samples. Comparing results of different studies and evaluating the quality of environmental data, especially for samples with low concentrations, is difficult without this information.

The most significant factor affecting SVOC concentrations in water is suspended solids concentration. In sediment, the most significant factors affecting SVOC concentrations are organic carbon content and distance from sources such as highway and power plants. Petroleum hydrocarbons, oil and grease, and polycyclic aromatic hydrocarbons (PAHs) in crankcase oil and vehicle emissions are the major SVOCs detected in highway runoff and urban stormwater.

The few loading factors and regression equations that were developed in the 1970's and 1980's have limited use in estimating current (1998) loads of SVOCs on a national scale. These factors and equations are based on few data and use inconsistent units, and some are independent of rainfall. Also, more cars on the road today have catalytic converters, and fuels that were used in 1998 are cleaner than when loading factors and regression equations were developed.

Comparisons to water-quality and sediment-quality criteria and guidelines indicate that PAHs, phenolic compounds, and phthalates in runoff and sediment exceeded U.S. Environmental Protection Agency drinking-water and aquatic-life standards and guidelines. PAHs in stream sediments adjacent to highways have the highest potential for adverse effects on receiving streams.

Few data exist on VOCs in highway runoff. VOCs were detected in precipitation adjacent to a highway in England, and chloromethane, toluene, xylenes, 1,2,4-trimethylbenzene, and 1,2,3-trichloropropane were detected in runoff from a highway in Texas. In urban stormwater, gasoline-related compounds were detected in as many as 23 percent of the samples. Land use could be the most significant factor affecting the occurrence of VOCs, with highest concentrations of VOCs found in industrial areas. Temperature is another factor affecting the occurrence and concentrations of VOCs. Urban land surfaces are the primary nonpoint source of VOCs in stormwater. However, the atmosphere is a potential source of hydrophilic VOCs in stormwater, especially during cold seasons when partitioning of VOCs from air into water is greatest. Tetrachloroethene, dichloromethane, and benzene were the only VOCs detected in stormwater that exceeded the U.S. Environmental Protection Agency drinking-water standards.

USGS Home Water Climate Change Core Science Ecosystems Energy and Minerals Env. Health Hazards

Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo logo U.S. Department of the Interior | U.S. Geological Survey
Page Contact Information: Webmaster
Page Last Modified: Wednesday, 09-Jan-2013 10:14:25 EST